A family of dynein genes in Drosophila melanogaster.
نویسندگان
چکیده
We report the identification and initial characterization of seven Drosophila dynein heavy chain genes. Each gene is single copy and maps to a unique genomic location. Sequence analysis of partial clones reveals that each encodes a highly conserved portion of the putative dynein hydrolytic ATP-binding site in dyneins that includes a consensus phosphate-binding (P-loop) motif. One of the clones is derived from a Drosophila cytoplasmic dynein heavy chain gene, Dhc64C, that shows extensive amino acid identity to cytoplasmic dynein isoforms from other organisms. Two other Drosophila dynein clones are 85 and 90% identical at the amino acid level to the corresponding region of the beta heavy chain of sea urchin axonemal dynein. Probes for all seven of the dynein-related sequences hybridize to transcripts that are of the appropriate size, approximately 14 kilobases, to encode the characteristic high molecular weight dynein heavy chain polypeptides. The Dhc64C transcript is readily detected in RNA from ovaries, embryos, and testes. Transcripts from five of the six remaining genes are also detected in much lesser amounts in tissues other than testes. All but one of the dynein transcripts are expressed at comparable levels in testes suggesting their participation in flagellar axoneme assembly and motility.
منابع مشابه
Aconitase and Developmental EndPointsasEarly IndicatorsofCellularToxicity Induced by Xenobiotics in Drosophila Melanogaster
Background: In this study, the toxicity of the different xenobiotics was tested on the fruit fly Drosophila melanogaster model system. Methods: Fly larvae were raised on food supplemented with xenobioticsat different concentrations (sodium nitroprusside (0.1-1.5 mM), S-nitrosoglutathione (0.5-4 mM), and potassium ferrocyanide (1 mM)). Emergence of flies, food intake by larvae, and pupation h...
متن کاملDrosophila roadblock and Chlamydomonas LC7: A Conserved Family of Dynein-associated Proteins Involved in Axonal Transport, Flagellar Motility, and Mitosis
Eukaryotic organisms utilize microtubuledependent motors of the kinesin and dynein superfamilies to generate intracellular movement. To identify new genes involved in the regulation of axonal transport in Drosophila melanogaster , we undertook a screen based upon the sluggish larval phenotype of known motor mutants. One of the mutants identified in this screen, roadblock ( robl ), exhibits dive...
متن کاملConcentration dependent effect of morphine, aspirin, capsaicin and chili pepper hydro alcoholic extract on thermal and chemical pain model in fruit fly (Drosophila melanogaster)
Introduction: Pain research using animal models is related to ethical concerns, so invertebrates and insects have been recommended by researchers. In the present study, the nociceptive and antinociceptive effects of capsaicin, aspirin, morphine and chili extract were examined using fruit fly (Drosophila melanogaster) as an alternative for rodent pain model. Methods: Stage 3 of larvae and ad...
متن کاملToxicological Evaluation of a New Lepidopteran Insecticide, Flubendiamide, in Non-Target Drosophila melanogaster Meigen (Diptera: Drosophilidae)
Background: Flubendiamide, comparatively a new pesticide designed to eradicate lepidopteran insect pests is known to have low risk to birds, mammals, fish, algae, honey bees, non-target arthropods, earthworms, soil macro- and micro-organisms, non-target plants as well as sewage treatment organisms; however, the risk assessment for aquatic invertebrates from metabolite could not be finalized wit...
متن کاملDrosophila roadblock and Chlamydomonas Lc7
Eukaryotic organisms utilize microtubule-dependent motors of the kinesin and dynein superfamilies to generate intracellular movement. To identify new genes involved in the regulation of axonal transport in Drosophila melanogaster, we undertook a screen based upon the sluggish larval phenotype of known motor mutants. One of the mutants identified in this screen, roadblock (robl), exhibits divers...
متن کاملCytoplasmic dynein function is essential in Drosophila melanogaster.
The microtubule motor cytoplasmic dynein has been implicated in a variety of intracellular transport processes. We previously identified and characterized the Drosophila gene Dhc64C, which encodes a cytoplasmic dynein heavy chain. To investigate the function of the cytoplasmic dynein motor, we initiated a mutational analysis of the Dhc64C dynein gene. A small deletion that removes the chromosom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology of the cell
دوره 5 1 شماره
صفحات -
تاریخ انتشار 1994